Skip to content. | Skip to navigation

Navigation

Stanford scientists document fragile land-sea ecological chain

by Portal Web Editor last modified Jan 10, 2013 07:30 AM
Contributors: Rob Jordan
© Stanford University
Intricate, often invisible chains of life are threatened with extinction around the world. A new study quantifies one of the longest such chains ever documented.

Original Source

Douglas McCauley and Paul DeSalles did not set out to discover one of the longest ecological interaction chains ever documented. But that's exactly what they and a team of researchers – all current or former Stanford students and faculty – did in a new study published in Scientific Reports.

Their findings shed light on how human disturbance of the natural world may lead to widespread, yet largely invisible, disruptions of ecological interaction chains. This, in turn, highlights the need to build non-traditional alliances – among marine biologists and foresters, for example – to address whole ecosystems across political boundaries.

This past fall, McCauley, a graduate student, and DeSalles, an undergraduate, were in remote Palmyra Atoll in the Pacific tracking manta rays' movements for a predator-prey interaction study. Swimming with the rays and charting their movements with acoustic tags, McCauley and DeSalles noticed the graceful creatures kept returning to certain islands' coastlines. Meanwhile, graduate student Hillary Young was studying palm tree proliferation's effects on bird communities and native habitats.

Palmyra is a unique spot on Earth where scientists can compare largely intact ecosystems within shouting distance of recently disturbed habitats. A riot of life – huge grey reef sharks, rays, snapper and barracuda – plies the clear waters while seabirds flock from thousands of miles away to roost in the verdant forests of this tropical idyll.

Over meals and sunset chats at the small research station, McCauley, DeSalles, Young and other scientists discussed their work and traded theories about their observations. "As the frequencies of these different conversations mixed together, the picture of what was actually happening out there took form in front of us," McCauley said.

Read More...

Back to Top